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ANALYSIS OF A DOUBLE FIN-TUBE FLAT CONDENSER-RADIATOR 

AND COMPARISON WITH A CENTRAL FIN-TUBE RADIATOR 

by Henry C. Haller 

Lewis Research Center 

SUMMARY 

An a n a l y t i c a l  study of a f la t  condenser-radiator with a double fin-tube 
geometry (closed sandwich) with var iable  tube side-wall thickness was  performed 
f o r  a Rankine space-power electr ic-generat ing system. The analysis  of the  
double f i n  rad ia tor  included consideration of tube and header pressure drops, 
meteoroid protect ion f o r  the tubes and headers, along w i t h  a de ta i led  presenta
t i o n  of the heat r e j e c t i o n  analysis  and t o t a l  weight charac te r i s t ics .  The 
double fin-tube rad ia tor  i s  compared t o  a conventional c e n t r a l  f in-tube con
f igura t ion  on a heat r e j e c t i o n  t o  weight basis f o r  a four-panel rad ia tor  con
f igurat ion.  

Both f i n  and tube geometries a r e  compared on the  bas i s  of the  same power 
leve l ,  working f l u i d  temperature, tube and header pressure drop, rad ia tor  mate
r ia l ,  and meteoroid protect ion c r i t e r i a .  A beryllium r a d i a t o r  f o r  a 1-megawatt 
system and a columbium a l l o y  rad ia tor  for a 500-kilowatt system, both a t  a ra
d i a t i n g  temperature of 1700° R, were chosen f o r  the  weight and geometry com
parisons. 

The conclusion reached indicates  a subs tan t ia l  weight savings can be r e a l 
ized with the  double fin-tube arrangement i f  the tube side-wall thickness can 
be reduced as a r e s u l t  of a possible meteoroid bumper e f f e c t  of t h e  enclosing 
f i n s .  Weight reductions compared t o  t h e  c e n t r a l  f in-tube geometry of up t o  
32 t o  39 percent were shown t o  be possible f o r  t h e  maximum reduction i n  s ide
wall thickness i n  t h e  two examples considered. This r e s u l t  f u r t h e r  substant i 
a ted t h e  preliminary conclusions given i n  an e a r l i e r  reference t h a t  compared 
t h e  double and c e n t r a l  f in-tube configurations neglecting t h e  e f f e c t s  of 
headers, pressure drops, tube w a l l  temperature drop, and powerplant thermo
dynamic cycle considerations. Thus an incentive i s  offered t o  f u r t h e r  inves t i 
ga te  the meteoroid bumper screen concept and i t s  appl icat ion i n  the  double f i n -
tube geometry rad ia tor .  

INTRODUCTION 

The generation of large amounts of e l e c t r i c  power i n  space using t h e  
Rankine cycle concept requires  t h a t  a la rge  amount of w a s t e  heat be re jec ted  



from t h e  working f l u i d .  This w a s t e  heat  is  t h e  amount of energy t h a t  must be 
r e j ec t ed  from t h e  working f l u i d  vapor leaving the  turb ine  i n  order t o  complete
l y  condense it. Since r ad ia t ion  i s  t h e  only mode of heat  t r a n s f e r  f o r  r e j e c t 
ing t h i s  energy and s ince  maximum temperatures are l imi ted ,  t h e  r e su l t i ng  ra
d ia to r  surface areas and weights are general ly  large.  Previous s tud ies  on 
space r ad ia to r s  ( r e f s .  1t o  5 )  have indicated t h a t  a c e n t r a l  f in- tube arrange
ment i s  f eas ib l e  s ince  it reduces r ad ia to r  weight by reducing t h e  prime surface 
area vulnerable t o  c r i t i c a l  damage by impacting meteoroids. Reference 6 pre
sents  t he  analysis and r e s u l t s  of a c e n t r a l  f in- tube r ad ia to r  using f l a t  p l a t e  
f i n s  of constant cross  sect ion.  

A preliminary comparison of severa l  f in- tube configurations was  car r ied  
out i n  reference 7 t h a t  did not include cycle considerations,  vapor and l i qu id  
headers, and tube and header pressure drops. The results of reference 7 indi
cated t h a t  a subs t an t i a l  weight savings could be obtained by using a double f i n  
tube with reduced rectangular  tube side-wall  thickness ins tead  of t h e  cen t r a l  
or open sandwich f in- tube arrangements. A reduced tube side-wall  thickness can 
r e s u l t  from t h e  assumption t h a t  t h e  two f i n s  of t h e  double f in- tube configura
t i o n  w i l l  a c t  as a bumper screen t o  incident  meteoroids, thus allowing some 
reduction i n  the  thickness  of t h e  tube s ide  wall. The double f in- tube configu
r a t i o n  i s  a t t r a c t i v e  from a s t r u c t u r a l  viewpoint s ince it provides a r i g i d  
s t ruc tu re  t h a t  has a continuous smooth surface t h a t  could be t h e  vehicle skin.  
These a t t r a c t i v e  f ea tu res  motivated t h e  need f o r  a more sophis t icated analysis .  

The purpose of t h i s  study i s  t o  analyze i n  a more comprehensive manner the  
heat r e j e c t i o n  and weight cha rac t e r i s t i c s  of a double f in- tube configuration 
with var iab le  rectangular  tube side-wall  thickness ,  and t o  more accurately 
iden t i fy  the  po ten t i a l  weight savings over r ad ia to r s  with a cen t r a l  f in- tube 
geometry. The vapor and l i q u i d  headers are a l s o  included i n  the  geometry ana
lyzed s ince they d i r e c t l y  a f f e c t  t h e  meteoroid pro tec t ion  requirements of t h e  
r ad ia to r  tubes and can be a s ign i f i can t  por t ion  of t h e  t o t a l  r ad ia to r  weight. 
There i s  a l so  a s izable  amount of heat t h a t  can be r e j ec t ed  f r o m t h e  vapor 
header f o r  large power systems ( r e f .  1). Working f l u i d  pressure drops w e r e  
a l s o  considered f o r  t h e  tubes and headers. 

A rectangular cross-sect ion f i n  w a s  chosen f o r  t h e  ana lys i s  and compari
son. A one-dimensional approach was taken i n  t h e  development of t h e  f i n  energy 
balance equation with t h e  assumption t h a t  t h e  base temperature of t he  f i n  i s  
equal t o  the  outer  surface temperature of t h e  tube armor. The r ad ia to r  heat 
r e j ec t ion  and weight ana lys i s  w a s  ca r r i ed  out f o r  two t y p i c a l  Rankine power-
planets :  a 1-megawatt potassium cycle with a 1700° R beryllium armor and f i n  
r ad ia to r ,  and a 500-kilowatt potassium cycle with a 1700° R columbium a l l o y  
rad ia tor .  This r epor t  presents  t h e  r e s u l t s  of t h e  heat  r e j e c t i o n  and weight 
analysis  f o r  t he  double f in- tube r ad ia to r  along with a comparison of these r e 
s u l t s  with those given i n  reference 6 f o r  t he  cen t r a l  f in- tube configuration. 

SYMBOLS 

A surface area, s q  ft  
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Ap r ad ia to r  planform mea ,  s q  f t  

PC vulnerable area, s q  f t  

a penetration correct ion f a c t o r  

B constant 

cP spec i f ic  heat ,  Btu/( l b )  (OF) 

sonic ve loc i ty  i n  m o r  material, dEag/pa, f t / s ec  

D tube diameter, f t  

Ea Young's modulus of m o r  material, lb / sq  f t  

F angle f ac to r ,  f r a c t i o n  of t he  energy leaving a surface t h a t  is  incident  
upon another surface 

vapor header occlusion f ac to r  

g u n i t s  conversion fac tor ,  32.17 f t / s ec2  

H incident energy, Btu/(hr) ( s q  f t )  

h heat of condensation, Btu/lb 

J mechanical equivalent of heat ,  778 ( f t )(lb)/Btu 

K f ac to r ,  (q, + q f ) / a r f i ~ i ~ $  

KH f l u i d  turning loss f ac to r  from header t o  tubes 

k thermal conductivity,  Btu/(hr) ( f t )(OR) 

L minimum half  length of f i n ,  equal t o  L* - Ro, f t  

L* one-half the  tube center t o  center dis tance,  f t  

2 ac tua l  half  length of f i n ,  f t  

N nmber of r ad ia to r  tubes 

NC conductance parameter, aZ2Tz/kt 

P cycle f l u i d  pressure,  lb/sq f t  

powerplant output, kw 

probabi l i ty  of zero punctures 

Q heat r e j e c t i o n  rate, Btu/hr 
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%I 
tube rad ian t  heat r e j e c t i o n  rate ,Btu/hr 

Qf f i n  rad ian t  heat  r e j e c t i o n  rate f o r  a f i n  length 21 r ad ia t ing  from 
both s ides ,  Btu/hr 

&rej t o t a l  r ad ia to r  heat r e j e c t i o n  rate ,Btu/hr 

Qual3 vapor header entrance qua l i t y  

QVH vapor header heat  r e j e c t i o n  r a t e ,  Btu/hr 

q heat r e j ec t ion  per u n i t  length of tube,  Btu/hr f t  

R rad ius  , f t  

Rb tube s ide  w a l l  t o  tube center l ine  dimension, Rb = Ro - (1 - f t  

63 f r a c t i o n  of flow area  occupied by one phase 

R e  Reynolds number 

T temperature, OR 

T* vapor sa tura t ion  temperature a t  tube i n l e t ,  OR 

t thickness of f i n ,  f t  

U ve loc i ty  of vapor, f t / s e c  

v ve loc i ty  of l i q u i d  , f t / s e c  
-
v average meteoroid veloci ty ,  f t / s e c  

W weight, l b  

F; weight flow per tube,  lb/sec 

-

W panel width, f t  


x normalized dis tance coordinate, x / l  


xvH f r ac t ion  of t o t a l  heat re jec ted  by t h e  vapor header 


xtf f r a c t i o n  of t o t a l  heat r e j ec t ed  by the  tubes and f i n s  


X coordinate measuring dis tance along lower f i n ,  f t  


Y normalized dis tance coordinate , y/l  


Y coordinate measuring dis tance along upper f i n ,  f t  
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rad ia tor  tube length,  f t  

constants i n  penetrat ion formula 

tube wall thickness ,  f t  

surface hemispherical emissivi ty  

thermal ef f e c t  iveness 

normalized temperature , T/Tb 

v iscos i ty ,  lb / f t - sec  

density,  lb/cu f t  (unless otherwise specif ied)  

Stefan-Boltzmann constant,  

mission exposure time, days 

two-phase-flow parameters 

Subscripts : 

a armor 

b tube base surface 

C tube l i n e r  

cond conduction 

F f r i c t i o n  

f f i n  

g vapor phase 

i inside 

LH l iqu id  header 

E l i qu id  

m momentm 

0 outside 

P p a r t i c l e  

R t o t a l  

0. 173x10-8 Btu/(hr) ( s q  f t )(OR4) 
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rad ia t ion  

s ide wall 

tube 

t o t a l  flow, l i q u i d  and vapor 

vapor header 

normalized distance coordinate, x/2 

coordinate measuring distance along lower f i n ,  f t  

normalized distance coordinate , y/2 

coordinate measuring distance along upper f in ,  f t  

conditions a t  tube i n l e t  

base surface 1 

base surface 2 

rad ia tor  i n l e t  conditions 

RADIATOR CONFIGUFLATION AND THERMODYNAMIC CYCLE 

The general r a d i a t o r  panel configuration considered f o r  t h e  analysis  i s  
shown i n  f igure  1where the  vapor from the  turbine exhaust i s  d is t r ibu ted  t o  
the finned tubes by a vapor header. The heat radiated from the vapor header 
and finned tubes causes the  vapor t o  condense. The condensate i s  then sub-
cooled and col lected i n  the  l i q u i d  header before being sent t o  the condensate 
pump. This scheme can be modified by dividing t h e  rad ia tor  i n t o  a number of 
nonredundant segments, each of which could be t r e a t e d  as a separate e n t i t y .  

The de ta i led  cross-section drawing of the  double f in-tube with var iable  
tube s ide w a l l  composed of tube l i n e r  inser ted i n  an armor block, which pro
vides meteoroid protection, and two rectangular f i n s  i s  shown i n  f igure  2. The 
tube l i n e r ,  which i s  exposed t o  the working f l u i d ,  must be capable of with
standing possible corrosion. The l i n e r  thickness must a l s o  be compatible with 
current fabr icat ion c a p a b i l i t i e s  and s t r u c t u r a l  requirements, and the  presence 
of the l i n e r  may a l s o  subs tan t ia l ly  reduce t h e  required armor thickness 
( r e f .  8 ) .  The l i n e r  thickness i s  a r b i t r a r i l y  taken as 6, = 0.040 Di with 
a minimum w a l l  thickness s e t  at 0.020 inch. The l i n e r  thickness was increased 
as the inside diameter was increased, so as t o  provide necessary s t i f f e n i n g  and 
strengthening of the  rad ia tor  tubes.  

For the  double f i n  geometry of f igure  2 ,  the  l i n e r  can be damaged by im
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pacting meteoroids i n  two general ways. The f i rs t  i s  by any primary impacts 
occurring on the outer exposed surfaces of the  tube block. These impacts are 
assumed t o  obey the conventional armor penetration and damage r e l a t i o n s  devel
oped f o r  tubes ( r e f s .  8 t o  lo), with vulnerable area given by 4RbZN. Accord
ingly, t h e  armor thickness 6a w a s  determined using the c r i t e r i o n  of r e f e r 
ence 9. The armor thickness, which i s  a r e s u l t  of the  optimization program 
( r e f .  6 ) ,  is  applied i n  f u l l  on the  upper and lower surface of t h e  tube. A 
second damage source can arise from a spray of p a r t i c l e s  on the armor block 
s i d e  surface ( ( D o  - 2t)ZN) r e s u l t i n g  from impacts on the  f i n  surfaces.  I n  view 
of the bumper ac t ion  involved and the obl iqui ty  of the secondary impacts, how
ever, a reduction w i l l  undoubtedly be allowed i n  the armor thickness required 
by t h e  tube block s i d e  w a l l  t o  resist t h e  effects of these secondary impacts. 
Since no spec i f ic  r e l a t i o n s  are a t  present avai lable  f o r  the determination of 
t h i s  side-wall thickness, a parametric var ia t ion  of the 6,/6, is used t o  ex
amine the  e f f e c t s  of reduced side-wall  thickness on rad ia tor  weight and geom
e t r y .  The parameter 6,/6, is defined as the f r a c t i o n  of the  armor thickness 
re ta ined on the  enclosed s i d e  of the tube block. 

The vapor header takes the form of a hollow paraboloid whose w a l l  consis ts  
of 0.12-inch-thick l i n e r ,  which was a r b i t r a r i l y  chosen, and whose meteoroid 
armor protect ion thickness i s  t h e  same as t h a t  required by the  tubes. The par
abol ic  shape insures constant ve loc i ty  i n  the  header. For simplici ty ,  the  
l iqu id  header w a s  designed with a constant diameter and a f l u i d  veloci ty  of 
4 f e e t  per second, so  t h a t  a very low pressure drop would r e s u l t .  The l i n e r  
f o r  the l iqu id  header follows the  same schedule with the inside diameter as do 
the  tube l i n e r s .  However, a maximum l i n e r  thickness i s  s e t  a t  0 . 1 2  inch. The 
l i q u i d  header a l s o  has meteoroid armor. 

The assumptions given herein f o r  the double fin-tube rad ia tor  geometry, 
with the exception of t he  f in- tube configura%ion, a l s o  hold f o r  t h e  c e n t r a l  f i n  
tube t h a t  w a s  analyzed i n  reference 7 and shown i n  f igure  3. 

The thermodynamic cycle used i n  t h i s  analysis  i s  the Rankine cycle, which 
uses a working f l u i d  t h a t  undergoes a change of phase. The working f l u i d  i s  
condensed i n  the  rad ia tor ,  which r e s u l t s  i n  a near isothermal condition pre
va i l ing  i n  t h e  tubes and vapor header. I n  order t o  show sample r e s u l t s  and 
compare t h e  two fin-tube geometries on a heat r e j e c t i o n  per un i t  weight and on 
a rad ia tor  geometry basis ,  two power leve ls  were chosen. Potassium w a s  chosen 
as the working f l u i d  i n  the cycle f o r  both power leve ls  with a peak turbine 
i n l e t  temperature of 2460° R and a rad ia tor  temperature of 1700° R. It w a s  
a l s o  specif ied t h a t  the  rad ia tor  tubes would subcool the  working f l u i d  looo R. 
Additional cycle requirements such as turbine and generator e f f ic ienc ies  were 
s e t  a t  0 .75  and 0.90, respect ively,  with 10 percent of the generator output r e 
quired f o r  accessories and controls.  The emittance of the  rad ia tor  was  taken 
t o  be 0.90, and the  e f fec t ive  sink temperature f o r  the rad ia tor  was assumed t o  
be Oo R. The foregoing values plus the  cycle temperatures, working f l u i d ,  and 
the  power l e v e l  chosen f o r  t h e  analysis  and comparison enabled the  determina
t i o n  of the t o t a l  heat r e j e c t i o n  rate and the  m a s s  flow r a t e  of the  working 
f l u i d  f o r  t h e  rad ia tor  design inputs.  Additional information required from t h e  
cycle analysis  i s  t h e  qua l i ty  of t h e  working f l u i d  enter ing the vapor header. 
The analysis  of the  thermodynamic cycle used i s  given i n  d e t a i l  i n  reference 6. 
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HEAT-TRANSFERANALYSIS 


Approach and Assumptions 

The ana lys i s  considers t h e  general  case of two rectangular  p r o f i l e  f i n s  of 
length 2 at tached t o  a tube enclosed i n  an armor block forming a double f i n  
configuration as shown i n  f igure  2. Energy input t o  t he  f i n  i s  comprised of 
heat conduction along t h e  f i n  from the  two tube side-wall  surfaces.  For any 
spec i f ic  choice of L/Ro t h e  f i n  length 2 as shown i n  f igu re  2 w i l l  depend 
on the  value of tube side-wall  thickness.  

The spec i f i c  assumptions used i n  the  development of t h e  heat- t ransfer  r e 
l a t i o n s  f o r  the  double f in- tube geometry as w e l l  as the  cen t r a l  f in- tube geome
t r y  a re  

(1)Radiator emittance i s  constant with temperature. 

( 2 )  For t h e  determination of r ad ia to r  temperature va r i a t ion  t h e  r ad ia to r  
surfaces a c t  as blackbodies with incident and emitted r ad ia t ion  governed by 
Lambert's cosine l a w .  

(3) Hemispherical r ad ia t ion  t o  space from both outer  surfaces  of the  rad i 
a t o r  t o  a 0' R space sink temperature. 

( 4 )  The base surface temperature of t h e  f i n  i s  assumed constant along the  
length of t he  tube and equal t o  the  tube block outer surface temperature. 

(5) Steady-state one-dimensional heat flow e x i s t s  i n  t h e  f i n s  and tube 
block. 

( 6 )  Material propert ies  a re  constant along the  length of f i n  and tube 
block and a r e  evaluated a t  the  f i n  base temperature. 

( 7 )  The development of t he  f i n  and tube angle f a c t o r s  f o r  t h e  radiant  in
terchange between f i n  and tube s ide walls i s  based on an i n f i n i t e  length of 
tube and f i n ,  with f i n  thickness assumed negl ig ib le  i n  the  development. 

(8) The ins ide  tube wall temperature i s  circumferent ia l ly  uniform and 
equal t o  the  stagnation temperature of t he  f l u i d  at t h e  i n l e t  of the  header. 

Tube W a l l  Temperature Drop 

Since the  tube block will have th i ck  w a l l s  due t o  the  armor required f o r  
meteoroid protect ion,  a s ign i f i can t  temperature drop will occur across the 
block. The assumed hea t - t ransfer  paths and t h e  various f i n  and tube block tem
peratures a r e  shown i n  f igu re  4. The ins ide  tube w a l l  temperature p i s  de
termined from reference 6 as 

* T =  
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where T3 i s  t h e  rad ia tor  f l u i d  stagnation temperature a t  the header i n l e t  i n  
degrees Rankine and uo i s  the  tube i n l e t  vapor velocity.  The turning loss  
fac tor  KH i n  equation (1)w a s  s e t  a t  1.15 ( r e f .  6 ) .  

The r e l a t i o n  between the  tube inside surface temperature and the  tube 
block outer surface temperature i s  based on a s implif ied approach t h a t  assumed 
heat i s  t ransfer red  from the tube inner surface t o  t h e  exposed surface of t h e  
tube block by one-dimensional conduction. This heat path w a s  chosen since it 
represents t h e  grea tes t  flow of energy. The heat transmission by conduction i s  
assumed t o  t r a v e l  a distance 6, through a cross-sect ional  area 2Rb dZ. The 
expression f o r  t h e  heat conduction i s  

For s implici ty  it i s  assumed that  the temperature drop Tjc - Tb i s  gov
erned primarily by the  radiant  heat t r a n s f e r  from t h e  exposed surface of t h e  
block (neglecting the conduction t o  the f i n s ) .  The expression f o r  rad ia t ion  
from one surface element may be wri t ten as 

dqrad = 2acRbT; dZ ( 3 )  

When equations (2) and ( 3 )  a r e  combined f o r  dqcond = dqradr the resu l tan t  
equation for the  approximate temperature drop through the  tube block w a l l  i s  
given as 

The temperature Tb obtained from equation ( 4 )  i s  then used i n  t h e  de
velopment of the f i n  heat- t ransfer  re la t ions .  The temperature of the  tube s ide 
w a l l  i s  a l s o  assumed t o  be equal t o  the  temperature of the  tube block exposed 
surface Tb regardless of t h e  thickness of the tube s ide w a l l  ( a l l  values of 
's/'aa). 

Fin Temperature Prof i le  

Formulation of equations. - Considering an element of the f i n  surface i n  
f igure  2 and employing t h e  previous assumptions, the l a w  of energy conservation 
f o r  an element can be expressed as the  energy balance between the net heat 
t r a n s f e r  due t o  conduction and radiat ion ( r e f .  11): 

dQcond + d s a d  = 0 ( 5 )  

The net i n t e r n a l  heat conduction through the element of thickness t and 
length Z i s  expressed as 

dQond = & (-ktZ E)& 
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The net  rad ian t  heat  r e j e c t i o n  from both s ides  of t h e  element of t he  f i n  i s  
composed of i t s  emission minus the  incident energy. This expression i s  given 
as 

The incident  energy term Hx i n  equation ( 7 )  i s  composed of t h e  incident en
ergy f r o m t h e  two side w a l l s  to an element of area on t h e  f i n  

and t h e  energy leaving an opposing f i n  surface incident  upon the  other 

k-21 

Subst i tut ion of expressions (sa) and (8b) i n t o  equation ( 7 )  y ie lds  

Introducing equations ( 6 )  and ( 9 )  i n t o  equation (5)  and the  dimensionless va r i 
ab les  

y = -Y 
1 

m 

yie ld  t h e  expression 

The angle f a c t o r s  i n  equation (10) a r e  evaluated using a r e l a t i o n  (ref. 
12,  eq. (31-58)) t h a t  appl ies  t o  p a r a l l e l  surfaces  of i n f i n i t e  length. For t h e  
configuration of f igu re  2 t h e  angle f ac to r s  i n  question are given as 
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%Ax-dAy --
3 / 2  dy 

[(Y - f *(q] 

Introduction of equations (ll), (12), and (13) and t h e  symmetry of t h e  
temperature d i s t r i b u t i o n  about x = 2 ,  t h a t  i s ,  T ( x )  = T(22 - x), i n t o  equa
t i o n  (10) y i e ld  the  expression 

where the  ac tua l  f i n  length 2 i s  given by the  expression ( f i g .  2 )  

2 = L +(:I- +a (15) 

11 




Computational procedure. - It was necessary t o  use numericalteGhniques t o  
solve equation ( 1 4 )  f o r  t h e  temperature p r o f i l e  of t h e  f i n  of length 2 .  The 
numerical solut ions were ca r r i ed  out on an IBM 7094 e l ec t ron ic  d i g i t a l  com
puter .  

The second order d i f f e r e n t i a l  equation d20/dX2 = Be4 + f ( X )  was  solved 
f o r  t h e  0 p r o f i l e  i n  t h e  i n t e r v a l  X = 0 t o  X = 1. The boundary conditions 
a re  0 = 1 at  X = 0 and d0/dX = 0 a t  X = 1, where B i s  a constant and 
f ( X )  i s  a funct ion of X. Kalaba's method was used and i s  now described. 

The term O4 was approximated by a l inea r  funct ion of 0, namely by the  
f irst  two terms of  i t s  Taylor s e r i e s  expansion. Central  differences were used 
t o  obtain an expression f o r  d20/dX2. A t  each point  of a mesh on the  i n t e r v a l  
x = 0 t o  X = 1, t h e  equation d20/dX2 = Be4 + f ( X )  was  thus approximated as a 
l inea r  funct ion of 0 .  The set of r e s u l t i n g  t r id i agona l  l i n e a r  equations w a s  
reduced t o  two-diagonal form, and these w e r e  then solved f o r  t h e  6 p r o f i l e  by 
backward subs t i tu t ion .  A n  i n i t i a l  0 p r o f i l e  guess was  used, and each succes
s ive i t e r a t i o n  yielded approximately one decimal place of accuracy. Solutions 
were obtained as a funct ion of t h e  input parameters Ne and 2/Ro. 

'Temperature p r o f i l e  r e s u l t s .  - Each so lu t ion  of t he  f i n  energy equation, 
which i s  independent of power and temperature l e v e l  or tube ins ide  diameter, 
provided a temperature d i s t r i b u t i o n  along the  f i n .  Results are p lo t t ed  i n  f i g 
ure 5 as a funct ion of pos i t ion  X on t h e  f i n  f o r  severa l  parametric values of 
Ne and 2/Ro. It i s  seen t h a t  t h e  temperature drop along the  f i n  i s  very s m a l l  
when t h e  conductance parameter Ne i s  small, which ind ica tes  a low thermal 
res i s tance  of t h e  f i n .  Additionally,  t he re  i s  l i t t l e  e f f e c t  of 2/Ro when Ne 
i s  s m a l l ,  although a greater temperature drop occurs with increasing 2/Ro
r a t i o .  This holds regard less  of t he  choice of t h e  tube w a l l  th ickness  r a t i o  
6,/6,, since only t h e  2/Ro r a t i o  i s  considered i n  the  development of equa
t i o n  (14) .  

Radiator Effectiveness 

Fin heat r e j ec t ion .  - After the  temperature d i s t r i b u t i o n  and t h e  slope of 
t he  temperature d i s t r i b u t i o n  curve a t  X = 0 have been determined, t he  net 
heat t r ans fe r r ed  by t h e  f i n  can be calculated.  The rate of heat loss from t h e  
f i n  outer surface a t  any point x on t h e  f i n  from a d i f f e r e n t i a l  a r ea  NZ dx 
i s  (seZW$ dx. The o v e r a l l  rate of heat l o s s  % from t h e  p a i r  of f i n s  t h a t  
forms the  double f i n  tube i s  

This equation i s  evaluated using t h e  solut ions of t he  f i n  energy equa
t i o n  (14) .  Comparison of t h i s  f i n  energy r e j ec t ion  t o  t h e  t o t a l  heat l o s s  f r o m  
both s ides  of an isothermal f in- tube sec t ion  of length 2 ( 2  + Rb) can be ex
pressed i n  dimensionless terms as 
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where 

and Q(X) i s  a function of X f o r  spec i f ic  values of 6,/6,, L/Ro, and Ne. 
Equation (17)  can be defined as t h e  thermal effectiveness of t h e  double f i n .  

The r e s u l t s  obtained from the  solut ions of equation (17)  f o r  f i n  effec
tiveness a r e  presented f o r  an example case i n  f igure  6 as a function of L/Ro
for  parametric values of Ne and 6,/6,. In  the aforementioned equations de
scr ibing f i n  effectiveness (eqs. ( 1 7 )  and (18)), the  tube w a l l  thickness 
must be known i n  order t o  obtain solut ions.  I n  order t o  obtain the  a c t u a l

6, 

value of 6,, the  tube inside diameter Di, tube l i n e r  thickness 6,, power and 
temperature leve l ,  mater ia ls ,  meteoroid protect ion c r i t e r i a ,  tube and header 
pressure drop, and d e f i n i t i o n  of rad ia tor  tube vulnerable area must be speci
f ied .  Thus, solut ions f o r  equation ( 1 7 )  require  complete solut ions f o r  t h e  
e n t i r e  rad ia tor .  Such r a d i a t o r  solut ions w i l l  be described i n  d e t a i l  i n  the  
sect ion RADIATOR WEIGHT AND GEOMETRY. 

Inspection of t h e  curves i n  f igure  6 reveals  t h a t  f o r  any f ixed value of 
L/Ro and 6,/6, the  f i n  effect ivenss  decreases with increasing values of N,. 
The f i n  effect iveness  i s  a l s o  seen t o  decrease w i t h  increasing 6,/6, at  con
s t a n t  Ne. When L/Ro equals zero the  value of f i n  effect iveness  does not 
equal zero when the  value of 6s/6a is other than 1. This i s  due t o  an in
crease i n  the  f i n  length caused by the  reduction of tube side-wall  thickness 
f o r  any choice of L/Ro r a t i o .  Thus, a t  L/Ro equal t o  zero, a f i n  remains 
of length 2 = 6, - 6,. 

Tube heat re jec t ion .  - The net heat loss from the ex terna l  surface of the  
tube block i s  j u s t  i t s  radiant  emission since there  i s  no incident energy from 
other p a r t s  of the system. This energy r e j e c t i o n  when compared t o  the t o t a l  
heat loss from both surfaces of an isothermal fin-tube sect ion of length 
2 ( 2  + Rb) can be defined as t h e  thermal effectiveness of the  exposed surface 
of the tube. This expression i s  
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where 2/Rb i s  defined i n  terms of R,, L, 6,, and 6,/6, i n  equation (18). 
The heat r ad ia t ion  from the  tube side-wall surfaces  is  already included as a 
contr ibut ion t o  t h e  heat  rad ia ted  from t h e  f i n ,  s ince i n  e f f e c t  t h e  rad ian t  
interchange a c t s  i n  a manner similar t o  t h e  heat conduction down t he  f i n .  This 
aspect i s ’ f u l l y  explained i n  reference 11. Solutions f o r  equation (19) a l s o  
require  values of armor thickness 6, and thus a r e  a r e s u l t  of t he  r ad ia to r  
ca lcu la t ion  procedure f o r  t h e  double f in- tube block configuration. 

Results of equation (19) for tube effect iveness  axe shown p lo t t ed  f o r  an 
example case i n  f igu re  7. Tube thermal effect iveness  i s  seen t o  decrease as 
L/Ro i s  increased, which ind ica tes  a decrease i n  t h e  r e l a t i v e  importance of 
t h e  tube port ion as t h e  f i n  length increases .  Decreasing the  tube wall r a t i o  
6,/6, a l s o  r e s u l t s  i n  a reduced tube effect iveness ,  which i s  caused by a re
duction i n  t h e  tube block outer  surface a rea  and thus the  energy it can r e j e c t  
t o  space. It i s  a l s o  seen from t h e  f igure  t h a t  f o r  an L/Ro r a t i o  equal t o  
zero t h e  tube effect iveness  does not equal 1 i f  the r a t i o  6,/6, i s  l e s s  than 1. 
This i s  brought about because a f i n  of length 6, - 6, remains ( see  eq. ( 1 5 ) ) .  

Total  f in- tube heat  re jec t ion .  - For ca lcu la t ion  purposes, it i s  des i rab le  
t o  formulate t h e  t o t a l  f in-tube thermal effect iveness  t h a t  can be determined by 
summing the  r e s u l t s  of equations ( 1 7 )  and (19)  f o r  f i n  effect iveness  and tube 
effect iveness ,  respect ively.  This expression i s  

Figure 8 shows a p l o t  of t o t a l  f in- tube effect iveness  7; against  L/Ro r a t i o  
f o r  severa l  choices of conductance parameter Ne and tube block side-wall 
r a t i o  6,/6, f o r  an example case. Inspection of the  curves shown i n  f igure  8 
reveals  t h a t  f o r  any f ixed  value of L/Ro and Ne t he  t o t a l  f in- tube thermal 
effect iveness  decreases as the  6,/6, r a t i o  decreases. This i s  reasonable 
s ince as t h e  6,/6, r a t i o  decreases the  amount of isothermal base ,surface de
creases.  The f in- tube effect iveness  is a l s o  reduced by increasing the  conduc
tance parameter or by increasing the  L/Ro r a t i o .  

Negligible va r i a t ion  i n  the  magnitude of 7: was observed f o r  t he  two 
power l eve l s  chosen f o r  t he  comparison. Thus t h e  curves given i n  figure 8 f o r  
t he  500-kilowatt case a l s o  apply fo r  t h e  1-megawatt power l e v e l  case. It was 
a l so  noticed t h a t  var ia t ions  of t he  tube ins ide  diameter had no appreciable e f 
f e c t  on t h e  value of 7; a t  a spec i f i c  value of t h e  L/Ro r a t i o ,  t he  6,/6, 
r a t i o ,  and the  conductance parameter Ne. 

PRESSUHZ DROP CONSIDERATIONS 

Another f ac to r  t h a t  is  required t o  determine the  geometry and weight of a 
r ad ia to r  i s  the  pressure drop determination i n  t h e  r ad ia to r  tubes and headers. 
This aspect of r ad ia to r  design helps t o  determine t h e  vapor header geometry and 

14  



I 


t he  required tube diameter, t h e  tabe length,  and the  number of tubes.  The 
equations presented are f o r  a Rankine cycle condenser-radiator which assumed 
&hat vapor flow i n  t h e  vapor header t o  be of t he  sane qua l i ty  as the  turbine 
exhaust, two-phase flow i n  the r ad ia to r  tubes and a l l - l i q u i d  flow i n  the  l i qu id  
header. The development of t h e  equations given i n  t h i s  sec t ion  are given i n  
reference 6 .  

Vapor header. - The determination of the  pressure drop i n  the  vapor header 
i s  s implif ied by assuming t h a t  only t h e  gas phase a f f e c t s  t h e  pressure drop. 
T h i s  pressure drop i s  expressed as a r a t i o  of A�’ t o  t he  header inlet pres
sure Pg with the  r e su l t i ng  r a t i o  kept constant f o r  comparative purposes. 
This equation, which i s  f o r  turbulent  flow, i s  

where um is  the  uniform vapor ve loc i ty  i n  the  parabolic header (based on the  
turbine exhaust qua l i t y  and neglecting t h e  flow area occupied by the  l i qu id )  
and Re i s  the  vapor Reynolds number based on the  vapor header maximum diam
e t e r  %. The value of qrH i s  obtained f r o m t h e  expression 

and the  t o t a l  panel width i n  equation (21) i s  

- = 3 (1 + 6)w 

2 

The term Qual3- i n  equation (22) i s  the  vapor qua l i ty  a t  the  entrance t o  the  
vapor header. The number of condensing tubes N i n  t he  previous equation i s  
determined f r o m  t he  tube pressure drop analysis  i n  conjunction w i t h  t he  op t i 
mization procedure used f o r  t h i s  f in-tube geometry. 

The amount of heat r e j ec t ed  t o  space from the  parabolic vapor header i s  
determined from the  following expression: 

where t h e  f a c t o r  Fm i s  defined as t h e  vapor header occlusion f ac to r  f o r  
radiant  emission t o  space and given a value of 0.85 f o r  t h i s  analysis  (ref. 
13) .  The ana lys i s  and r e s u l t s  of reference 13 ( f i g .  4) although pr imari ly  f o r  
tubes and f i n s  a re  assumed va l id  f o r  t h e  occlusion of t he  header-panel arrange
ment shown i n  f igure  1. 

Radiator Tubes 

The pressure drop i n  the r ad ia to r  tubes where flowing vapor is  condensing 
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was computed from a combination of several  basic  flow and energy equations t h a t  
a r e  given i n  d e t a i l  i n  reference 6. n e  flow model (ref. 14)  used assumed t h a t  
at  any given sect ion perpendicular t o  the  flow direct ion,  t h e  temperature and 
pressure i n  both the  l i q u i d  and vapor are uniform and t h e  same f o r  both phases. 
This flow model a l s o  assumed turbulent  flow with l i q u i d  and vapor v e l o c i t i e s  
uniform i n  each phase at a given cross sect ion,  but t h a t  the  two ve loc i t ies  
were not necessar i ly  equal. Pressure drops were computed f o r  a s e r i e s  of in
cremental tube lengths,  and t h e  pressure drop f o r  the  whole tube was  obtained 
by s m i n g  the incremental drops. 

The t o t a l  change i n  pressure f o r  an e n t i r e  rad ia tor  tube i s  comprised of a 
f r i c t i o n a l  and a momentum component. The f r i c t i o n  pressure drop i s  described 
by the expression 

where Re = 4$l /nD.pg 1 g  and Og i s  a function of X. The d i f f e r e n t i a l  form of 
the  change i n  pressure due t o  a change i n  momentum is 

A t h i r d  r e l a t i o n  is  required t h a t  r e l a t e s  the  increment of tube length and 
the increment of condensate formed: 

(27 )  

where f o r  the double fin-tube rad ia tor  the  d e f i n i t i o n  of K i s  

Equations ( 2 5 ) ,  ( 2 6 ) ,  and ( 2 7 )  along with equation (1)a r e  solved simultaneous
l y  f o r  dW, dPm, and dPF. The t o t a l  change i n  pressure f o r  each increment can 
then be found from the  r e l a t i o n  

and the t o t a l  pressure change f o r  the e n t i r e  rad ia tor  tube can be found by 
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summing the incremental changes. For comparative purposes, the t o t a l  tube 
pressure drop i s  expressed as the r a t i o  of pressure drop t o  the tube i n l e t  
pressure. 

The pressure drop associated with turning t h e  vapor from the vapor header 
in to  the rad ia tor  tubes and accelerat ing the  flow can be calculated from t h e  
expression 

2 
1 uo 

mentrance = KH 5 Pg ( 3 0 )  

where the tube entrance loss fac tor  KH i s  given t h e  same value used i n  equa
t i o n  (1). 

Liquid Header 

The pressure drop i n  the  l iqu id  header i s  obtained by applying Fanning’s 
equation with a f r i c t i o n  f a c t o r  f o r  turbulent flow. This expression i s  

where Re i s  t h e  Reynolds number corresponding t o  the  maximum l iquid  ve loc i ty  

VLH tha t ,  i n  these calculat ions,  w a s  taken as 4 f e e t  per second. The l i q u i d  
header diameter DLH, which i s  assumed constant, i s  determined by applying t h e  
continuity equation a t  the  header e x i t  t o  give the  expression 

RADIATOR WEIGHT AND GEOMETRY 

The heat-reject ion analysis  of the  f i n  and the  tube w a s  nondimensionalized 
so tha t  the r e s u l t s  could be used f o r  general design purposes. Using the  pre
vious r e s u l t s  f o r  analyzing the  merits of t h e  var iable  tube wall double f i n -
tube configuration i n  rad ia tor  designs i s  impractical  without consideration of 
the  t o t a l  weight of t h e  vapor and l iqu id  headers as well  as the tubes and f i n s .  
It i s  necessary, therefore ,  t o  consider the  r a t i o  of heat r e j e c t i o n  per un i t  
weight C& eJ./W and t h e  influencing e f f e c t s  of r a d i a t o r  geometry l imi ta t ions  on 
the  maximum heat r e j e c t i o n  per un i t  weight. 

Armor Thickness 

In  order t o  determine both rad ia tor  weight and geometry, the  e f f e c t s  of 
meteoroid penetration must be considered on both the  tubes and headers. This 
w i l l  d i c t a t e  t h e  required armor protection thickness needed f o r  the rad ia tor .  
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The tube armor thickness 6, i s  determined using t h e  meteoroid protect ion c r i 
ter ia  given i n  reference 9, which i s  based on a comprehensive appraisal  of t h e  
avai lable  data  and theor ies  concerning t h e  meteoroid penetration phenomenon. 
According to reference 9, t h e  resu l tan t  equation f o r  the  armor thickness 6,
i s  given by the  expression 

where i n  t h e  previous equation 

a = 1.75 

p = 1.34 

pp = 0.44 g/cu em 

-vP = 98,400 f t / s e c  

% = 0.53xlO-~~gp/(sq f t ) ( d a y )  

Inser t ion  of these constants i n t o  equation (33) along with u t i l i z i n g  Young’s 
modulus i n  t h e  d e f i n i t i o n  of sonic veloci ty  of the  mater ia l  yields  the  more 
compact form 

r v 10.249 1.48 
(34) 


. The t o t a l  exposed area to be protected by d i r e c t  impacts 47. i s  assumed 
t o  be the  outer  surface of the  vapor header and t h e  projected area of the  tube 
block. The l i q u i d  header contribution i s  assumed t o  be negligible since i t s  
surface a rea  i s  s m a l l  compared t o  t h a t  of the  vapor header. Thus 

The r a d i a t o r  tube projected area i s  given by t h e  expression 

where 2/Rb i s  obtained from equation (18) and T$ from equation (20). The 
f r a c t i o n  of the  t o t a l  r a d i a t o r  heat t h a t  i s  re jec ted  by the  tubes and f i n s  

qf i s  defined by t h e  expression 

% + %xtf = Qrej = l - X m  (37) 
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The vulnerable =ea of the  vapor header i s  assumed t o  be i t s  f u l l  surface 
area and i s  given as 

where Fm i s  the  occlusion f ac to r  f o r  t h e  e f f e c t  of the  r ad ia to r  panel on the  
heat r e j e c t i o n  of t h e  vapor header surface.  

Combining equations (35) t o  (38) y i e lds  -r 

We ight R a t  i o  

The t o t a l  heat r e j ec t ion  per un i t  weight of a fin-tube r ad ia to r  can be ex
pressed as 

%e j 
Qrej NZ 

w - w-
NZ 


where f o r  r ad ia t ion  from both s ides  of t he  rad ia tor  and f r o m  t h e  vapor header 

Inser t ion  of equation ( 2 3 )  i n t o  equation (41) y ie lds  the  following form of the  
t o t a l  r ad ia to r  heat r e j ec t ion  per un i t  length of tube: 

where the  outside tube diameter (block width) Do can be expressed i n  terms of 
the l i n e r  thickness 6,, the  inside tube diameter Di, and the  armor thickness 

6, and can be given as 

D0 = D.1 + 26, + 26,. (43) 

The t o t a l  weight of t he  r ad ia to r  is comprised of the  individual  weights of 
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t h e  vapor header, the  l i q u i d  header, and the tube-f in  panel. The weight of the  
l i q u i d  inventory i n  t h e  subcooler port ion of the r a d i a t o r  tubes i s  neglected 
since the subcooler length i s  s m a l l .  The vapor header weight i s  given by 
( r e f .  6 )  

and t h a t  of t h e  l i q u i d  header and condensate by 

The f i n  and tube panel weight can be calculated using the  expression 

When t = 012 3Tb/kNc, Do from equation (43) ,  2 from equation (15), and 

Rb = R~ + 6, + (6,/6,)6, are introduced i n t o  equation (46) ,  the  equation for 
the  tube and f i n  panel weight becomes 

+ 26, + 26,) 

The t o t a l  rad ia tor  weight i s  then obtained. by summing the r e s u l t s  of equa
t i o n s  (44) ,  (45) ,  and (47) .  The denominator of equation (40) can be found by 
dividing the  t o t a l  rad ia tor  weight by the  t o t a l  tube length NZ.  This r e s u l t  
along with the  r e s u l t s  of equation (42) when inser ted i n t o  equation (40) y ie ld  
the  rad ia tor  heat r e j e c t i o n  per un i t  weight. The peak value of Qrej /W can 
then be obtained by p l o t t i n g  the  r e s u l t s  of equation (40) as a function of 
L/Ro f o r  spec i f ic  values of conductance parameter Ne and tube side-wall ra
t i o  6,/6,. 

Panel Geometry 

In  addi t ion t o  t h e  important aspect of minimizing weight f o r  p r a c t i c a l  ra
d ia tor  designs, it i s  a l s o  of i n t e r e s t  i n  most cases t o  invest igate  the geom
e t r y  of the  rad ia tor  as it might a f f e c t  the integrat ing of the  vehicle and ra
dia tor .  Planform area,  aspect r a t i o ,  and f i n  thickness a r e  three  f a c e t s  of the 
geometry of the  rad ia tor  panel t h a t  must be determined i n  order to s a t i s f y  
radiator-space vehicle in tegra t ion  and s t r u c t u r a l  and f a b r i c a t i o n a l  require
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ments of the.  f in-tube configuration. 

Radiator planform area Ap i s  obtained from the  equation 

Ap = ZNZ(L + Ro) = 
%e jxtf 
2 ci~T;?$ 

It i s  seen from t h i s  equation t h a t  planform area w i l l  vary inversely with over
a l l  fin-tube thermal effectiveness 7: f o r  a spec i f ic  choice of power and tem
perature leve l .  The planform area w i l l  generally increase with increasing 
L/Ro because r$ decreases as the  L/Ro r a t i o  i s  increased ( f i g .  8 ) .  

Another i n t e r e s t i n g  fac tor  with respect  t o  the  geometry of the  rad ia tor  i s  
the magnitude of the  f i n  thickness.  Radiator applications might require  t h a t  
the  f i n  have s t r u c t u r a l  o r  fabr ica t iona l  q u a l i t i e s  t h a t  could r e s u l t  i n  non
optimum weights and dimensions. Fin thickness t f o r  the closed sandwich con
f igura t ion  can be calculated from the  expression 

-
The panel aspect r a t i o ,  which i s  defined as the r a t i o  of panel width W 

t o  tube length Z, i s  obtained by using equation ( 2 3 )  f o r  w and the  r e s u l t s  
of the  pressure drop calculat ions f o r  Z. 

Method of Solution 

Simultaneous solut ion of equations ( 4 )  , (ZO), (21), (29), (33), and (39)  
requires  inputs of inside tube diameter Di, tube and vapor header pressure 
drop r a t i o s ,  power l e v e l ,  temperature leve l ,  and t h e  propert ies  of t h e  mate
r ia ls  and cycle f l u i d .  This r e s u l t s  i n  values of the parameters sa, Tb, Xm, 
N ,  and u0 f o r  a selected var ia t ion  of L/Ro, conductance parameter Ne, and 
the  tube side-wall r a t i o  &,/sa. 

Important r e s u l t s  required f o r  weight and geometry calculat ions will in
clude the  number of tubes N, tube length Z, tube outside radius  Roy panel 
width E, and t h e  inside diameter of the  vapor header Dm. A n  e lec t ronic  
d i g i t a l  computer was used t o  obtain the  desired results t h a t  required an i t e r a 
t i v e  type solution. 

RESCSLTS AND DISCUSSION 

Calculation Inputs 

Calculations making use of t h e  r e s u l t a n t  equations developed i n  the  analy
. sis f o r  the  double fin-tube geometry require  inputs such as inside tube diam

e t e r ,  rad ia tor  vapor i n l e t  temperature, cycle power l e v e l  and conditions, mate
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rials of construction, meteoroid pro tec t ion  c r i t e r i a ,  tube block side-wall 
thickness  r a t i o ,  and pressure drop i n  t h e  tubes and header i n  order t o  com
p l e t e l y  specify a r ad ia to r  solut ion.  For t h i s  reason two spec i f i c  cases a e  
used i n  order t o  show the  e f f e c t s  of some of t h e  previously mentioned var iables  
on heat r e j e c t i o n  per  u n i t  weight and on r ad ia to r  geometry. 

The first case considered i s  a 1-megawatt e l e c t r i c a l  output powerplant 
with t h e  r ad ia to r  at  1700' R. The tube amnor and the  f i n  were assumed t o  be 
made of beryllium, and t h e  tube l i n e r  was assumed t o  be a columbium al loy.  The 
second case i s  a 500-kilowatt system with the  r ad ia to r  a t  1700° R. For t h i s  
case, t h e  tube armor, tube l i n e r ,  and t h e  f i n  w e r e  a l l  taken t o  be columbium 
1-percent zirconium a l loy .  These two cases both used a peak cycle temperature 
of 2460' R and potassium as t h e  cycle f lu id .  Inside tube diameters of 3/8, 
1/2, 5/8, 3/4, and 1inch w e r e  chosen with tube lengths  increased t o  allow 
looo R of subcooling. A 500-day mission time and a p robab i l i t y  of no puncture 
P(0) of 0.995 were chosen f o r  t h e  ca lcu la t ion  of meteoroid pro tec t ion  thick
ness. Pressure drop r a t i o s  f o r  t he  two cases were s e t  a t  &'/E' = 0.02 f o r  t h e  
vapor header and AP/P = 0.05 f o r  t h e  r ad ia to r  tubes. The emittance of t h e  
surface coating on t h e  f i n s ,  tubes,  and headers was taken t o  be 0.90. Radiator 
material proper t ies  were assumed constant with temperature and evaluated at  
1700' R. The a l l  columbium a l l o y  r ad ia to r  had a dens i ty  of 530 pounds per cu
b ic  foot ,  thermal conductivity of 34 Btu per hour per foot  per OF, and a modu
l u s  of e l a s t i c i t y  of 0.202xl-010 pounds per square foot .  The beryllium rad ia to r  
used a dens i ty  of 115 pounds per cubic foot ,  a thermal conductivity of 51.5 Btu 
per hour per foot  per OF, and a modulus of e l a s t i c i t y  of 0 . 3 9 7 ~ 1 0 ~ ~pounds per 
square foot .  The beryllium rad ia to r  used a columbium l i n e r  with the  mater ia l  
p roper t ies  previously mentioned. 

Calculations using t h e  given inputs and spec i f ica t ions  were a l s o  made f o r  
t he  cen t r a l  f in-tube geometry t h a t  used t h e  method described i n  reference 6 .  

Radiator Weight 

Radiator heat r e j e c t i o n  per u n i t  weight S e j / W  w a s  p lo t t ed  for each 
value of inside tube diameter Di and tube block side-wall  r a t i o  6,/6, 
chosen f o r  t h e  comparison over a range of t h e  paxameters Ne and L/Ro. Re
sults showing the  v a i a t i o n  i n  heat r e j e c t i o n  r a t e  per u n i t  weight as a func
t i o n  of L/Ro f o r  severa l  values of conductance parameter Ne a r e  shown 
p lo t t ed  f o r  two sample cases i n  figure 9. The f igu re  shows r e s u l t s  for the  tube 
block side-wall thickness t o  tube armor thickness r a t i o  6,/6, equal t o  0.5 
with tube ins ide  diameters of 3/8 and 5/8 inch chosen f o r  t he  500-kilowatt and 
1-megawatt cases, respect ively.  Each constant Ne curve i s  seen t o  peak a t  a 
spec i f ic  value of L/Ro with the  value of t he  L/Ro a t  peak Q r e j / W  increas
ing as  Ne i s  increased. 

P lo t t ing  the  maxima fo r  each Ne curve of figure 9 and t h e  addi t iona l  re
sults f o r  t h e  6,/6, = 0 and 1.0 cases y i e ld  a performance map ( f i g .  10) t h a t  
p lo t s  peak heat  r e j e c t i o n  per un i t  weight against  L/Ro. It i s  seen from f i g 
ure  10 t h a t  decreasing the  armor block side-wall thickness  r e s u l t s  i n  a sub
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s t a n t i a l  increase i n  the  value of %,j/W. According t o  figure 10, the  max'i
m ~ u n  Qre j /W occms a t  an Ne approximately equal t o  0.75 f o r  t he  500-kilowatt 
system a t  a tube ins ide  diameter of 3/8 inch. The r e s u l t s  f o r  t he  1-megawatt 
system indicate  t h i s  m a x i "  a l s o  occurs near an Nc = 0 . 7 5  f o r  a near optimum 
tube ins ide  diameter of 5/8 inch. 

P lo t t i ng  the  maxima of f igu res  l O ( a )  and ( b )  on f igures  =(a) and (b ) ,  re
spect ively,  and the  r e s u l t s  f o r  addi t iona l  ins ide  tube diameters y i e l d  the  
maximum value of Qrej /W and i ts  corresponding inside tube diameter f o r  t he  
three values of 6s/6a chosen fo r  t h e  comparison. The curves given i n  f igu re  
l l ( a )  f o r  t he  500-kilowatt case ind ica te  t h a t  m a x i m  Qrej/W f o r  any choice 
of 6s/6a occurs a t  a tube ins ide  diameter between 3/8 and 1 / 2  inch with the  
Qrej/W curve r e l a t i v e l y  f la t  i n  t h i s  region. Maximum Qrej/W occurred a t  a 
diameter between 1/2 and 5/8 inch f o r  t he  1-megawatt system as shown i n  f i g 
u re  l l ( b ) .  

The weight r e s u l t s  of t he  double f in- tube configurations a r e  compared t o  
the  c e n t r a l  f in- tube r e s u l t s  i n  f igures  l l ( a )  and ( b )  i n  order t o  show the  de
s i r a b i l i t y  of the double f in- tube w i t h  reduced tube side-wall  thickness.  It i s  
observed from f igu re  11that the  c e n t r a l  f in- tube configuration has a la rger  
hea t  r e j ec t ion  per u n i t  weight than the  double f in- tube with 6s/6a = 1.0. For 
t h e  500-kilowatt case, t he  double f i n  tube with 6s/6a = 0.5 affords  an 
11-percent weight advantage a t  maximum Qrej/W over the  c e n t r a l  f i n  tube, and 
a maximum upper l i m i t  of 39 percent when 6s/6a = 0. The r ad ia to r  weight per 
ki lowatt  of e l e c t r i c a l  power f o r  t h e  500-kilowatt case using a columbium radi
a t o r  i s  10.2,  15.0, and 19.0 pounds per kilowatt  f o r  the  = 0, 0.5, and 
1 .0  cases, respec t ive ly .  

The percentage weight savings a r e  reduced f o r  the 1-megawatt power l e v e l  
with the  beryllium rad ia to r  and a r e  8 percent for the  6s/6a = 0,5 case and 
32 percent f o r  t he  &,/Ea = 0 case.  For t h i s  power leve l ,  t he  spec i f i c  weight 
w a s  3.50, 4.68, and 5.73 pounds per ki lowatt  for the  6s/6a = 0, 0.5, and 1 . 0  
cases, respect ively.  The beryllium rad ia tor  has a smaller percent increase i n  
Q r e j / W  than the  columbium rad ia to r  because there  is l e s s  r e l a t i v e  weight i n  
the  beryllium armor. 

The conclusions reached i n  f igu re  19  of reference 7, which compared the 
double f in- tube and c e n t r a l  f in- tube configurations without taking in to  account 
the  e f f e c t s  of header heat  r e j ec t ion  and weight as wel l  as pressure drops i n  
the  r ad ia to r  tubes, showed a similar percentage increase i n  Qrej/W by reduc
ing 6,/6,. This data,  which was for a 1-megawatt, 1700O R, beryllium radia
t o r ,  indicated a 6-percent weight advantage f o r  t h e  double f i n  tube a t  a 
6,/6, = 0.5 and a 28 percent advantage a t  6,/6, = 0 over t h e  cen t r a l  f i n -
tube configuration. 

The conductance parameter obtained a t  m a x i m  heat r e j ec t ion  per uni t  
weight i s  p lo t t ed  a s  a function of ins ide  tube diameter f o r  a' 6s/6a = 0.5 Tor 
both geometries i n  f igu re  12 .  Results obtained f o r  &,/Ea other than 0.5 
showed very l i t t l e  var ia t ion  in the  o p t i "  value of Ne. Both the  500
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kilowatt  and 1-megawatt examples are shown with t h e  double fin-tube r e s u l t s  
y i e l d i n g t h e  higher value of Ne f o r  a s p e c i f i c  choice of inside tube diam
e t e r .  It i s  a l s o  noted t h a t  the  values of Ne obtained f o r  the  500-kilowatt 
columbium r a d i a t o r  a r e  somewhat la rger  than  those obtained f o r  the  1-megawatt 
beryllium rad ia tor .  Reference 7 indicated t h e  double f in- tube configuration 
reached maximum Q r e j / W  at much la rger  values of Ne than those obtained i n  
t h i s  report .  

Radiator Geometry 

Planform area. - The planform area of  the double fin-tube geometry i s  
shown p lo t ted  in---figure 13 f o r  t h e  two power l e v e l s  chosen f o r  t h i s  investiga
t ion .  This figure i l l u s t r a t e s  the  calculated var ia t ions  of planform area with 
L/Ro r a t i o ,  conductance parameter Ne, and tube side-wall thickness t o  armor 
thickness r a t i o  6,/6, f o r  the  two power cycles f o r  peak Q r e j / W  conditions. 
The two inside tube diameters used f o r  the r e s u l t s  shown i n  f igure  13 corre
spond t o  near minimum weight conditions. Reducing t h e  tube side-wall thickness 
r a t i o  f o r  peak L/Ro r a t i o s  r e s u l t s  i n  only a s m a l l  var ia t ion  i n  planform area 
f o r  a constant value of Ne but r e s u l t s  i n  a s izable  decrease i n  L/Ro. How
ever, it should be kept i n  mind t h a t  t h e  a c t u a l  f i n  length 2 i s  not decreas
ing t h a t  rap id ly  since the  f i n  length i s  being increased by the amount 6, - 6, 
as 6,/6, approaches zero. The decrease i n  L/Ro (which i s  a measure of t h e  
tube center-to-center dis tance)  as 6,/6, decreases causes a reduction i n  tube 
block effect iveness  (due t o  reduced &b) and an increase i n  f i n  effect iveness  
( f i g .  6 )  t h a t  r e s u l t  i n  only a s m a l l  v a r i a t i o n  i n  t o t a l  f in-tube effect iveness  
f o r  a spec i f ic  choice of Ne. This accounts f o r  the negl igible  varrat ion of 
planform area with varying 6,/6,. Similar r e s u l t s  are obtained f o r  t h e  other 
inside tube diameters investigated.  

Comparison of the  planform area r e s u l t s  of the  double fin-tube geometry 
with those of t h e  c e n t r a l  f in- tube geometry ind ica tes  good agreement as shown 
by f igure  14. The planform area obtained f o r  the  c e n t r a l  f i n  tube i s  l e s s  than 
t h a t  of the double f i n  tube f o r  i n t e r n a l  tube diameters greater  than 1 / 2  inch 
f o r  the 500-kilowatt columbium r a d i a t o r .  A t  the  3/8-inch diameter, which cor
responds t o  near minimum weight, the two fin-tube geometries agreed t o  within 
4 percent. For the 1-megawatt beryllium system, the double f i n  tube has the 
la rger  planform area a t  tube diameters grea te r  than 5/8 inch. A t  near optimum 
weight corresponding t o  a 5/8-inch diameter, t h e  c e n t r a l  f in- tube geometry 
of fe rs  only a s m a l l  savings i n  planform area .  The planform area obtained f o r  
the  double fin-tube geometry i n  reference 7 f o r  the  1-megawatt rad ia tor  i s  much 
grea te r  than t h a t  obtained from the  comparison calculat ions of t h i s  repor t .  
This is  brought about because the conductance parameter a t  maximum Gej/W f o r  
t h e  case of reference 7 w a s  l a rger  than the values obtained i n  t h i s  repor t .  
Figure 13 v e r i f i e s  t h a t  increasing conductance parameter Ne r e s u l t s  i n  in
creased planform area .  

Fin thickness.  - The e f f e c t  of reducing the  tube side-wall r a t i o  
on f i n  thickness i s  shown f o r  the  two examples i n  f igure  15 f o r  peak Qretj/W 
conditions a t  near optimum inside tube diameter. I n  both cases, reducing 

24 




6,/6, r e s u l t s  i n  a s izable  decrease i n  f i n  thickness at constant Ne. Accom
panying t h i s  decrease i n  f i n  thickness i s  a reduction i n  L/Ro and thus tube 
spacing. The magnitude of t h e  f i n  thickness obtained f o r  the  two sample cases 
a t  optimum values of Ne ( f i n  thickness t i s  greater  than 0.020 in .  f o r  the  
columbium radia tor  and greater  than 0.035 i n .  f o r  t h e  beryllium rad ia tor )  r e 
sul ted i n  values of f i n  thickness that  a r e  reasonable and should s a t i s f y  s t ruc
tural and fabr ica t iona l  requirements. 

The comparison of t h e  f i n  thickness obtained f o r  the  double fin-tube con
f igura t ion  indicates  an increasing t o t a l  f i n  thickness w i t h  increasing values 
of tube s ide w a l l  t o  armor r a t i o  6,/6, throughout the  range of D i  inves t i 
gated f o r  both power l e v e l s  ( f i g .  1 6 ) .  Curves are given f o r  f i n  thickness a t  
maximum $ e j / W  f o r  both geometries and both system power levels  with c e n t r a l  
and double fin-tube 6,/8, = 0.5 cases agreeing c lose ly  f o r  the  1megawatt 
rad ia tor .  

Panel aspect r a t i o .  - Radiator panel aspect r a t i o ,  which i s  defined as the 
r a t i o  of panel width t o  t h e  tube length Z f o r  the  four panel rad ia tor  of 
f igure  1, i s  shown p lo t ted  i n  f igure 1 7  f o r  �he two double fin-tube example 
cases. The aspect r a t i o  of a panel i s  seen t o  decrease as the  tube block s ide
w a l l  r a t i o  6,/6 decreases a t  a constant Ne. The decrease i n  aspect r a t i o  
with reduced i s  primarily a r e s u l t  of the  reduced L/Ro since re4uc
t i o n s  i n  6,/6, had l i t t l e  e f f e c t  on planform area as shown by f igure 13. 
These r e s u l t s  can be indicated by inspection of equation (e),which describes 
planform area and length, and equation ( 2 3 ) ,  which describes the t o t a l  panel 
width q. The reduction i n  aspect r a t i o  a t  constant planform area i s  explained 
by the calculat ions which showed t h a t  as 8,/6, ge ts  smaller the number of 
tubes and the tube length increase as the L/Ro r a t i o  decreases. This w a s  
accompanied by a la rge  reduction i n  the working f l u i d  i n l e t  tube veloci ty .  

The panel aspect r a t i o  showed p r a c t i c a l l y  no difference between the cen
t r a l  fin-tube and double fin-tube configurations as indicated i n  f igures  18(a)  
and (b)  f o r  the  500-kilowatt and 1-megawatt systems, respectively.  

Number of tubes. - The number of rad ia tor  tubes required w a s  found t o  in
crease subs tan t ia l ly  as t h e  tube block side-wall r a t i o  decreased. The 500
kilowatt  columbium radia tor  w i t h  a tube inside diameter of 3/8 inch had 296, 
337, and 430 tubes f o r  6s/6a r a t i o s  of 1.0, 0.5, and 0, respectively,  a t  
maximum heat r e j e c t i o n  per un i t  weight. The I-megawatt beryllium rad ia tor  
using a tube inside diameter of 5/8 inch had 223, 250, and 302 tubes f o r  6,/6,
r a t i o s  of 1.0, 0.5, and 0, respectively,  at  maximum &rej/W. 

For s implici ty  and r e l i a b i l i t y  of fabr ica t ion  it i s  desirable t o  reduce 
the  number of tubes. A s izable  reduction i n  the  number of tubes without much 
reduction i n  F e j / W  can be had by j u s t  increasing the  s ize  of the  tube inside 
diameter. For t h e  500-kilowatt columbium radia tor  with tube block side-wall 
r a t i o  set at 0.5, a 3/8-inch inside tube diameter required 337 tubes whereas a 
l/Z-inch inside diameter results i n  206 tubes. This reduction i n  the number of 
tubes r e s u l t s  i n  only a 2-percent decrease i n  C&ej/W. The 1-megawatt beryl
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liwn rad ia tor  with 6,/6, s e t  at 0.5 required 250 tubes f o r  a 5/8-inch inside 
tube diameter whereas a 3/4-inch inside diameter required j u s t  182 tubes.  This 
reduction resu l ted  i n  only a 3-percent decrease i n  Gej/W. Similar reductions 
i n  the  number of tubes can be obtained a t  values of 6,/6, equal t o  0 and 1.0 
with s m a l l  reductions i n  Fej/W. 

Comparison of t h e  number of tubes f o r  t h e  c e n t r a l  a.nd double fin-tube 
rad ia tors  a t  maximum q e j / W  for the  500-kilowatt case indicated the  c e n t r a l  
f in-tube geometry required 308 tubes compared t o  298 tubes for t h e  double f i n -
tube &,/&, = 1.0  r a d i a t o r  a t  an inside tube diameter of 3/8 inch. This t rend  
a l s o  held f o r  the  1-megawatt case f o r  which t h e  c e n t r a l  f in-tube required 226 
tubes compared t o  223  f o r  t h e  double fin-tube &,/6, = 1.0 rad ia tor .  

Interpolat ion of r e s u l t s .  - If the  values of the  r a t i o  of 6,/6, other 
than t h e  three  values chosen for t h i s  invest igat ion (0,  0.5, and 1)a r e  desig
nated by forthcoming meteoroid bumper r e s u l t s ,  addi t iona l  points may be ob
tained from curves f a i r e d  through the  calculated points  t o  obtain intermediate 
values of panel aspect r a t i o  g/Z, f i n  thickness t ,  rad ia tor  planform area 
Ap, and rad ia tor  heat r e j e c t i o n  per u n i t  weight Q r e j / W .  

SUMMARY OF RFSULTS 

An analysis  of t h e  double fin-tube configuration with variable tube block 
side-wall thickness and a comparison with a comparable c e n t r a l  f in-tube radia
t o r  f o r  the sample cases of a l-megawatt beryllium r a d i a t o r  and a 500-kilowatt 
columbium radia tor  for a 500-day mission time and probabi l i ty  of no puncture 
P ( 0 )  of 0.995 showed t h a t  

1. A subs tan t ia l  increase i n  rad ia tor  heat r e j e c t i o n  per uni t  weight i s  
possible f o r  the  double f in- tube geometry if the tube block side-wall thickness 
can be reduced t o  less than 75 percent of t h a t  required f o r  normal armor thick
ness.  

2 .  The double fin-tube configuration with r a t i o  of tube block side-wall 
thickness t o  normal armor thickness of 0.5 o f f e r s  an 11and 8 percent weight 
savings over t h e  c e n t r a l  f in-tube geometry f o r  the  500-kilowatt and 1-megawatt 
cases, respectively.  This corresponds t o  15.0 pounds per kilowatt f o r  the 500
kilowatt  case and 4.68 pounds per kilowatt f o r  the 1-megawatt case considered 
herein compared t o  1 6 . 7  and 4.83 pounds per kilowatt  f o r  the cent ra l  f in-tube 
500-kilowatt and 1-megawatt cases, respectively.  

3. The percent weight savings i s  increased t o  39 and 32 percent for the  
500-kilowatt and 1-megawatt cases, respectively,  if  the  r a t i o  of tube block 
side-wall thickness t o  normal armor thickness is  s e t  a t  0. In  t h i s  case, t h e  
corresponding rad ia tor  s p e c i f i c  weights would be 10 .2  and 3.50 pounds per k i l o 
w a t t  f o r  t h e  double f in- tube geometry and 1 6 . 7  and 4.83 pounds per kilowatt f o r  
the c e n t r a l  f in-tube geometry. 

4. The double fin-tube configuration reached maximum heat re jec t ion  per 

26 



uni t  weight f o r  t he  1-megawatt system at  a conductance parameter of 0.75 where
as maximum heat  r e j e c t i o n  per un i t  weight f o r  t h e  c e n t r a l  f in- tube geometry 
occurred a t  0.63. These values f o r  t h e  500-kilowatt case were 0.63 and 0.75, 
respectively,  f o r  t h e  double and cen t r a l  fin-tube. However, t h e  conductance 
parameter associated with maximum heat re jec ted  pe r  u n i t  weight decreases with 
decreasing ins ide  tube diameter f o r  both t h e  double and cen t r a l  f in-tube radi
ators,  

5. The double f in- tube r ad ia to r  reaches maximum heat r e j ec t ed  per un i t  
weight f o r  a tube ins ide  diameter i n  the  range from 3/8 t o  1 / 2  inch for t he  
500-kilowatt case, and from 1 / 2  t o  5/8 inch f o r  t he  1-megawatt case. 

6. The physical  dimensions of t he  double f in- tube r ad ia to r  (planform area,  
panel aspect r a t i o ,  number of tubes,  inside tube diameter, and f i n  thickness) 
can be var ied over a f a i r l y  wide range without se r ious ly  decreasing the  radia
t o r  heat r e j e c t i o n  per un i t  weight. 

7. The f i n  thickness  obtained f o r  maximum heat r e j ec t ion  per un i t  weight 
f o r  t h e  double f in-tube geometry i s  of reasonable f ab r i ca t iona l  and s t r u c t u r a l  
magnitude (grea te r  than 0.02 in .  f o r  t he  500 kw columbium rad ia to r  and greater  
than 0.035 in. f o r  t h e  1Mw beryllium radia.tor). 

8. The values of planform area  and panel aspect r a t i o  obtained f o r  t he  
double and c e n t r a l  f in- tube geometries were i n  close agreement regardless  of 
t he  choice of tube block side-wall  r a t i o  near t he  minimum weight condition. 
Comparison of t h e  t o t a l  f i n  thickness f o r  the  two geometries agreed well  a t  a 
tube block side-wall  thickness r a t i o  of 0.5, but showed considerable var ia
t i ons  a t  side-wall  r a t i o s  of 1.0, and 0. 

9. Reduction of t h e  tube block side-wall thickness r a t i o  subs tan t ia l ly  
increases the  number of r ad ia to r  tubes at  maximum heat r e j e c t i o n  per un i t  
weight. However, t he  number of tubes can be reduced t o  t h e  values correspond
ing t o  the  c e n t r a l  f in- tube geometry by increasing t h e  value of Di above 
t h a t  f o r  maximum heat  r e j e c t i o n  per un i t  weight. The weight penalty involved 
i s  only severa l  percent.  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, August 1 2 ,  1964 
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